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EXECUTIVE SUMMARY

The groundwater flow and radionuclide transport at the Amchitka Island underground nuclear
tests are modeled using two-dimensional numerical simulations. A multi-parameter uncertainty
analysis is adapted and used to address the effects of the uncertainties associated with the definition
of the modeled processes and the values of the parameters governing these processes. The nuclear
tests performed at Miirow, Long Shot and Cannikin are the focus of this investigation. These tests
were detonated on October 2, 1969, October 29, 1965, and November 6, 1971, respectively. The
announced yield of these test are approximately one megaton for Milrow, 80 kilotons for Long Shot
and less than five megatons for Cannikin.

The flow model is conceptualized to address the problem of density-driven flow where the
saltwater intrusion problem is encountered. The multi-parameter uncertainty analysis addresses the
effects of the uncertainty associated with four of the parameters governing these processes on the
resulting solution. These parameters are the hydraulic conductivity, recharge, fracture porosity and
macrodispersivity. The heat-driven flow and three-dimensional flow features are addressed in a less
rigorous manner via a sensitivity analysis. This includes the geothermal heat, the shot-induced heat
effects, the chimney geometry, the effects of nearby faults and the effect of the island half-width.
All the simulations presented in this report, as well as the sensitivity analyses, are performed using
the FEFLOW model of the WASY Institute for Water Resources Planning and Systems Research
Ltd.

The conceptual transport model simulates many processes in addition to the
advection-dispersion process. The release mechanism and glass dissolution, sorption effects, matrix
diffusion and radioactive decay are among the processes modeled. The parametric uncertainty
analysis also extends to three of the transport parameters governing the glass dissolution process,
the matrix diffusion process and local scale dispersion. The solution of the transport problem is
performed using a numerical particle-tracking algorithm and a semi-analytical solution is used for
the matrix diffusion studies.

Hydraulic conductivity data coilected from six boreholes are analyzed to yield a best estimate
for the homogeneous conductivity value and the range of uncertainty associated with this estimate.
Temperature logs measured in several of the boreholes on the island are used to estimate
groundwater recharge. Measurements of total porosity were made on numerous core samples
obtained from four boreholes. There are no measurements for fracture porosity, and therefore,
values for this parameter are selected based on reported values from the literature.

Batch sorption experiments were performed using cores collected from the Cannikin
emplacement well. Sorption on both basalt and breccia was investigated for strontium, cesium, and
jead dissolved in water of basically seawater composition. The high ionic strength of the solution
and rock properties resulted in no significant sorption for any ion except lead. The resulting
distribution coefficient for lead was used to obtain a surface-based sorption constant for retardation
of strongly sorbing radionuclides in fractures. Effective diffusion coefficients were also determined
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for the cores and used to determine the matrix diffusion parameter controlling mass transfer from
high-velocity fracture flowpaths into the surrounding matrix. This parameter is also dependent on
the fracture half-aperture, estimated as 5 x 10** m from literature values.

A detailed preliminary uncertainty analysis is performed for Milrow to evaluate the impact of
uncertainties of individual parameters on transport results. The numerical model is individually
calibrated for each test site using site-specific chloride concentration and head data. After
calibration, the Milrow configuration is used to perform a parametric uncertainty analysis, where
we vary one parameter at a time and evaluate the effects of this change on the results of the transport
solutions. This analysis resulted in reducing the list of uncertain parameters to only three significant
parameters (recharge, conductivity and porosity) and fixing the rest of the parameters at their best
estimate.

The final modeling stage performed for all three shots utilized multiple realizations of the flow
field generated by considering random combinations of recharge, conductivity and porosity drawn
at random from their respective distributions. All transport parameters were fixed at their best
estimate. The ensemble of transport solutions is then analyzed in terms of the mass arrival to the
seafloor, the first arrival time and the location and time where peak fluxes and concentrations occur.
An additional sensitivity case is also presented for addressing the effect of changing the strength of
the matrix diffusion process.

Transport results indicated that the radionuclide movement at Long Shot is much faster than
at Milrow and Cannikin. That is due to the location of the cavity being very shallow as compared
to the other two tests. The arrival time of the peaks of mass flux and concentration for tritium is in
the order of 20 to 30 years for Long Shot and 100 to 125 years for Milrow and Cannikin. This led
to higher mass fluxes and concentrations breaking through at Long Shot than at Cannikin or Milrow
with the difference depending on the radionuclide’s half-life.

In addition to the three uncertain parameters considered (recharge, conductivity and fracture
porosity), the results are also very sensitive to the parameters affecting the diffusion of radionuclides
into the rock matrix. This sensitivity is greater for radionuclides with short half-lives. Uncertainties
primarily in determining the fracture aperture lead to great uncertainty in the matrix diffusion
strength. In addition, the semi-analytical solution employed for addressing the matrix diffusion
process is based on many simplifying assumptions that are not necessarily satisfied in the field.

A variety of sensitivity studies are presented. With the exception of evaluating matrix
diffusion, the alternate scenarios are performed on several realizations selected to be representative
of the gamut of flow behavior. As a result, the sensitivity results are not directly comparable to the
Monte Carlo results, but do allow identification of the general magnitude of impact that process
uncertainty contributes. A variety of numerical solution issues, matrix diffusion, colloid transport,
uncertainty in island half-width, sea level changes, and geothermal processes are evaluated using
the two-dimensional models. The impact of the two-dimensional simplification, flow in the rubble
chimney, Cannikin Lake nuclear heat and flow in fault zones are all evaluated with
three-dimensional models.
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The presence of the nuclear chimney, with its high vertical conductivity, is found to dominate
many of the other conceptualizations (the chimneys are included in the base-case Monte-Carlo
calculations). Numerical solution issues, sea level changes, geothermal processes, the
two-dimensional simplification, Cannikin Lake, and fault zones all have relatively limited impact
on transport results for the realizations analyzed, or result in significantly less transport than the base
case. Matrix diffusion, colloid transport, istand half-width, and nuclear heat are potentially more
significant. The results of the risk assessment will determine whether the uncertainties identified
here are of potential significance or can be tolerated within an acceptable margin of safety.
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